x^2+4x-15=180

Simple and best practice solution for x^2+4x-15=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+4x-15=180 equation:



x^2+4x-15=180
We move all terms to the left:
x^2+4x-15-(180)=0
We add all the numbers together, and all the variables
x^2+4x-195=0
a = 1; b = 4; c = -195;
Δ = b2-4ac
Δ = 42-4·1·(-195)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{199}}{2*1}=\frac{-4-2\sqrt{199}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{199}}{2*1}=\frac{-4+2\sqrt{199}}{2} $

See similar equations:

| 7(x-4)=5(16-x) | | (8/x)-3=2-(7/x) | | -16=-9x-7 | | 9-25=(-7-x)-(25-) | | (9b-8)-2(4b+4)=-7 | | -8(4b+3)+(33b-6)=0 | | 6y^2+10y+4=0 | | 8x+4x+2+5=7x+3+4x | | 3x/2+4=4x-11 | | -0.5x=-0.3 | | 30=4x-2  | | (x^2)/10=3x+22.5 | | (1)=5x^2-4x+4 | | (0)=5x^2-4x+4 | | (-1)=5x^2-4x+4 | | (-2)=5x^2-4x+4 | | X^(2/3)+0.27x^2=0.54 | | 1÷x-2+3÷x+3=4÷×^2+×-6 | | 172=105-u | | X^0.6+0.27x^2=0.54 | | 6(8+x)=42 | | (u+3)^2=0 | | u+3^2=0 | | 3(t-4)+7t=5(2t+5)-9 | | X+24=5/4x | | 89-u=229 | | 5.25x-6.43=2.76x+9.89 | | 8x-4=-44 | | 3x=150-x | | (x+4)/6=(3x-4)/10 | | x+4/6=3x-4/10 | | 50+4y-18=15y-10-5y |

Equations solver categories